Comparing Socio-technical Design Principles with Guidelines for Human-Centered Al

Thomas Herrmann

Information Management and Technology Management (IMTM) Institut für Arbeitswissenschaft, University of Bochum, Germany

HCII- Washington 2024

RUB

Background

Prof. Dr.-Ing. Thomas Herrmann Information Management and Technology Management

2

Background 1 – Human Centered Artificial Intelligence (HCAI) and Socio-Technical Systems

"An Interactive Human Centered Artificial Intelligence is an Artificial Intelligence that enables interactive exploration and manipulation in real time and is designed with a clear purpose for human benefit while being transparent about who has control over data and algorithms. (Schmidt, 2020)"

aiming at using the **complementary strengths of human intelligence and AI** to behave more intelligently than each of the two could be in separation and where

socio-technical ensembles

and its human and Al parts can co-evolve to improve over time, (Dellermann et al., 2019)

Prof. Dr.-Ing. Thomas Herrmann Information Management and Technology Management

3

Background 2 – Socio-technical Systems

Socio-technical system as systematical intertwinement of social and organizational practices with technical artefacts and infrastructure HCI as an enabler of this intertwinement, beside other measures, such as training etc.

Prof. Dr.-Ing. Thomas Herrmann Information Management and Technology Management

4

Background 3 – Principles to support Socio-technical Design

RUB

Socio-technical design is not only about designing technology that includes a socio-organizational requirements,

but also about developing social and organizational practices

that complement technical functionality

and

helps overcome technical shortcomings.

Cherns (1976, 1987)

- 1. Compatibility with objectives
- 2. Minimal critical specification of rules

3. Variance control

4. Boundary location of interdependent roles

5. Information flow

6. Power and authority for access to resources

7. Multifuncionality

- 8. Support of congruence
- 9. Transitional organization
- 10. Incompleteness

Mumford (1983) – STS should support following fits

- 1. Knowledge Fit
- 2. Psychological Fit
- 3. Efficiency Fit
- 4. Task Structure Fit
- 5. Ethical Fit (social values)

Prof. Dr.-Ing. Thomas Herrmann

Background 3 – Principles to support Socio-technical Design

RUB

Cherns (1976, 1987)

- 1. Compatibility with objectives
- 2. Minimal critical specification of rules
- 3. Variance control
- 4. Boundary location of interdependent roles
- 5. Information flow
- 6. Power and authority for access to resources
- 7. Multifuncionality
- 8. Support of congruence
- 9. Transitional organization
- 10. Incompleteness

Prof. Dr.-Ing. Thomas Herrmann Mumford (1983) – STS should support the following fits

- 1. Knowledge Fit
- 2. Psychological Fit
- 3. Efficiency Fit
- 4. Task Structure Fit
- 5. Ethical Fit (social values)

Information Management and

Technology Management

Short comings: new technical developments and new research areas are not considered

Background 4 – Revised Principles on an empirical and interdisciplinary basis

Empirical fields of the problem bases				Research areas	
1. Smart factories				1. Usability	
2. Health care				2. Computer suppo	orted Cooperation
3. Learning support				3. Privacy	
4. Creativity support				4. Process Manage	ment
				5. Job Design	
306 Problems	1) Visibility			21%;	
	2) Flexibility		14%; 35.0	Grou	oing of 173
	3) Communication		12%; 28.8	princ	iples,
	4) Information exchange		12%; 30.5	guide	lines,
	5) Balance of effort	1	1%; 27.8		
	6) Compatibility		12%; 29.3		
	7) Efficiency	9%; 22	2.8		
	8) Technical support	7%; 18.3			
•	0%	5% 10%	15% 2	0%	
Prof. DrIng. Thomas Herrmann		Information Management and Technology Management			Washington - HCII 2024

Background 5 – Extended Principles to support Socio-technical design

RUB

Cherns (1976, 1987)

- 1. Compatibility with objectives
- 2. Minimal critical specification of rules
- 3. Variance control
- 4. Boundary location of interdependent roles
- 5. Information flow
- 6. Power and authority for access to resources
- 7. Multifuncionality
- 8. Support of congruence
- 9. Transitional organization

10. Incompleteness

Prof. Dr.-Ing. **Thomas Herrmann**

Mumford (1983) – STS should support following fits

- 1. Knowledge Fit
- 2. Psychological Fit
- 3. Efficiency Fit
- 4. Task Structure Fit
- 5. Ethical Fit (social values)

Technology Management

Background 6 – AI-oriented principles

SLR, (18 papers out of 795 related to HCAI and guidelines or principles)

- 1. **Transparency,** (Awareness, Comprehensibility, explainability, explorability, traceability)
- 2. **Autonomy** (human agency, oversight, freedom, human in the loop, controllability)
- 3. Accountability (Responsibility, trust)
- 4. **Benefits and well-being** (sustainability, minimizing stress, anxiety, frustration)
- 5. **Fairness** (responsibility, justice, human values, dignity, solidarity, diversity, inclusiveness)
- 6. **Privacy** (Secrecy, protection of personality, data governance, limited reachability)
- 7. Variance (Variability, Imperfection)
- 8. **Safety** (robust, reliable, accurate, no harm integrity)

Prof. Dr.-Ing. Thomas Herrmann

Background 7 – AI-oriented and socio-technical principles

SLR, (18 paper out of 795 related to HCAI and guidelines or principles)

- 1. Transparency, (Awareness, Comprehensibility, explainability, explorability, traceability)
- 2. **Autonomy** (human agency, oversight, freedom, human in the loop, controllability)
- 3. Accountability (Responsibility, trust)
- 4. Benefits and well-being (sustainability, minimizing stress, anxiety, frustration)

Technology Management

- 5. Fairness (responsibility, justice, human values, dignity, solidarity, diversity, inclusiveness)
- 6. **Privacy** (Secrecy, protection of personality, data governance, limited reachability)
- 7. Variance (Variability, Imperfection)

8. **Safety** (robust, reliable, accurate, no harm integrity)

Prof. Dr.-Ing. **Thomas Herrmann**

	So He	cio-technical uristics	Related AI aspects		
	1.	Visibility	Transparency, Accountability, Privacy		
	2.	Flexibility and evolution	Autonomy, Variance		
	3.	Communication support	Benefits and wellbeing, accountability, selected aspects of privacy: limited reachability,		
	4.	Information exchange	Privacy and data governance, selected aspects of safety: data quality, integrity and access;		
	5.	Balance of effort and benefit	Benefits and wellbeing, selected aspects of fairness, such as promotion of human values		
	6.	Compatibility	Selected aspects of fairness: avoidance of biases		
	7.	Efficiency	Benefits and wellbeing		
	8.	Supportive technology	Safety		
Information Management and					

Findings

Prof. Dr.-Ing. Thomas Herrmann

Result 1 – Keeping the organization in the loop

In a *human-in-the-loop* (HITL) system, a human operator is a crucial component of an automated control process, **handling challenging tasks of supervision**,

exception control, continuous improvement.

Socio-technical perspective: Technically supported HITL only works if management decisions and organizational practices authorize, prepare and promote the human activities!

Planning & Human in the loop Organization in the loop I allowing & I a

integrating Al-usage into

handling of original tasks

HCI for controllability and oversight is not sufficient – the management must allow, prepare and promote workers to take over control.

Functionality for explainability is not sufficient – people must have time to use it and support to understand explanations.

Example:

Prof. Dr.-Ing. Thomas Herrmann Information Management and Technology Management RUB

allowing &

promoting

Result 2 – Organizational practices can help to overcome shortcomings of AI

Instead of absolute technical reliance and robustness,

compensation by organizational measures is relevant

Example:

Incomplete explanations can be completed by human experts Hard to understand explanations can be translated by human experts.

Prof. Dr.-Ing. Thomas Herrmann

Result 3 – AI can help meet socio-technical principles

STS principles or heuristics do not only help design AI applications

AI can also help to realize the principles

Examples:

Al can

- serve as a gatekeeper to help regulate reachability in the privacy context
- help to trace the origin of information
- help optimize efficiency
- support finding experts who can help with explaining <u>AI</u>

Prof. Dr.-Ing. Thomas Herrmann

Result 4 – Autonomy and oversight must be extended with possibilities for mutual evolution

- Socio-technical systems are basically characterized as being a subject of continuous transformation
- \rightarrow This characteristic is also relevant for AI

Examples:

- Interactive Machine Learning
- Continuous adjustment to contextual changes
- Continuous exploitation of newly available data

Prof. Dr.-Ing. Thomas Herrmann

Result 5 – Flexibility and autonomy must include dealing with uncertainty and incompleteness

Socio-technical systems are basically characterized as being incomplete - this is a reason for continuous transformation and evolution

 \rightarrow Being incomplete is also relevant for AI-Solutions

Accepting flexibility, incompleteness and constant evolution conflicts with safety and robustness

Prof. Dr.-Ing. Thomas Herrmann

Result 6 – Fairness is not sufficiently addressed in the socio-technical discourse

Within the conventional STS Design,

Fairness is only realized within a socio-technical system

if it is reflected in the values of the actors of the system and thus, becomes part of their responsibility – but actors outside in its context are not considered.

→ Socio-technical systems have also to consider the interests of people outside the system who are affected by AI-based decision making

Consequently, an additional socio-technical principle or heuristic such as 'value implantation' could be relevant

to implement fairness into social and organizational practices.

Prof. Dr.-Ing. Thomas Herrmann Information Management and Technology Management

17

RUB

Result 7 – Benefit must be balanced with effort

Users may be willing to sacrifice ease of use or efficiency if they experience an advantage in terms of other values instead.

 \rightarrow people may be willing to exercise control and oversight when using AI – even if this causes inefficiencies, because being in control is a value in itself.

Trust calibration: The relation between feeling a need for control and trust building is not sufficiently discussed within STS-research.

Prof. Dr.-Ing. Thomas Herrmann Information Management and Technology Management RUB

Conclusion

The field of HCAI, responsible AI and ethical guidelines for AI on the one hand, and socio-technical design principles and heuristics on the other do not completely overlap and can benefit from each other.

> Constant evolution, incompleteness \rightarrow HCAI Fairness, trust calibration \rightarrow STS

Principles and guidelines cannot only regulate AI usage But AI can also help to meet these principles and guidelines

Prof. Dr.-Ing. Thomas Herrmann